IG Computer Science

Unit 1: Problem Solving

Part 5: Arrays and Linear Search Topic 3: Sorting and Searching Algorithms

Lecture Contents

- Arrays
 - Definition
 - Defining an Array
 - Reading an Array
 - Writing to an Array

Array – Definition

• Array – a collection of elements in a contiguous block of memory

- The size of the array is *fixed*
 - *fixed* = determined when it is created, and cannot be changed
- Elements are of the same type (all numbers, or all strings, etc.)
- Each element accessed by its *index*

This should make more sense with examples...

Array – Definition

• An array of numbers:

• An array of strings:

myStrings apple banana peach

Defining an Array

- Defining an array
 - Pearson pseudocode:

SET numbers TO [1, 3, 5, 7, 9]

Defining an Array

• Defining an array

- Pearson pseudocode:
 SET numbers T0 [1, 3, 5, 7, 9]
- We'll worry about the exact syntax later, but just so you've seen it, here's how to define this array in Java, Python, and C#:
 - Java: int[] numbers = { 1, 3, 5, 7, 9 };
 - C#: int[] numbers = { 1, 3, 5, 7, 9 };
 - Python: numbers = [1, 3, 5, 7, 9]

Reading an Array

- Reading an array
 - Pearson pseudocode:
 SET numbers TO [1, 3, 5, 7, 9]
 SET value TO numbers[2]
 SEND value TO DISPLAY

- What do you expect the output to be?

Reading an Array

• Reading an array

- Pearson pseudocode:

- SET numbers TO [1, 3, 5, 7, 9] SET value TO numbers[2] SEND value TO DISPLAY
- What do you expect the output to be?
- Arrays are zero-based in most programming languages
 - not zero-based in R, COBOL, MATLAB, and a few others

So the output of the above pseudocode will be: 5

Reading an Array

- Reading an array
 - Pearson pseudocode:
 - SET value TO numbers[2]

- We'll worry about the exact syntax later, but just so you've seen it, here's how to read and element of this array in Java, Python, and C#:
 - Java: value = numbers[2];
 - C#: value = numbers[2];
 - Python: value = numbers[2]

Writing to an Array

- Writing to an array
 - Pearson pseudocode:
 - SET numbers[2] TO 6

Writing to an Array

- Writing to an array
 - Pearson pseudocode:
 - SET numbers[2] TO 6

- We'll worry about the exact syntax later, but just so you've seen it, here's how to write a value this array in Java, Python, and C#:

- Java: numbers[2] = 6;
- C#: numbers[2] = 6;
- Python: numbers[2] = 6

Length of an Array

- Getting the length of an array
 - Pearson pseudocode:
 - SET length TO LENGTH(numbers)

- We'll worry about the exact syntax later, but just so you've seen it, here's how to get the length of an array in Java, Python, and C#:
 - Java: length = numbers.length;
 - C#: length = numbers.Length;
 - Python: length = len(numbers)

Arrays – Summary

• Array – a collection of elements in a contiguous block of memory

numbers.

numbers

value

35

- The size of the array is *fixed*
 - *fixed* = determined when it is created, and cannot be changed
- Elements are of the same type (all numbers, or all strings, etc.)
- Each element accessed by its *index*

Pseudocode:

SET numbers TO [1, 3, 5, 7, 9]
SET value TO numbers[2]
SET numbers[2] TO 6
SEND value TO DISPLAY

Linear Search

- Not very efficient
- Frequently used because it's very simple
- Start at the beginning and go through each element step by step

numbers 13579 01234

Linear Search – Assignment 1

- Draw a flowchart that searches for the <u>largest value</u> in an array using the *linear search* algorithm
 - Inputs: the array
 - Output: the largest value found in the array
- Write the Pearson pseudocode for the linear search algorithm
 - it must match your flowchart

Linear Search – Assignment 2

- Draw a flowchart to search for a specific value in an array using the *linear search* algorithm
 - Inputs: the array, and the value to search for
 - Output: the *index* in the array where the value is found
 - If the value is not found, return the value -1
- Write the Pearson pseudocode for the linear search algorithm
 - it must match your flowchart

IG Computer Science

Unit 1: Problem Solving

Part 5: Arrays and Linear Search Topic 3: Sorting and Searching Algorithms